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The spectroscopic constants and the potential  energy curve of F2 were 
calculated, using the fourth-order  MB-RSPT with a single-determinant R H F  
starting wave function. With an extended [5s4p2dlf]  basis set we obtained 
the equilibrium bond distance and the harmonic vibrational frequency with 
a relative error of about 0.5%, these are in very good agreement  with 
experiment.  In calculations of the potential  energy curve for distances larger 
than about  1.4 Re the method breaks down. We analysed the effect of the 
individual fourth-order  contributions: single, double, triple and quadruple 
excitations. The role of the renormalization term was stressed in the discussion 
of various approximations to the full fourth-order  energy and in comparison 
with other related approaches. The basis set effect has been also examined. 
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1. Introduction 

The Many-Body Rayleigh-Schr6dinger Perturbat ion Theory  (MB-RSPT) is pres- 
ently well established as a powerful alternative method for investigation of the 
correlation problem in ab initio calculations of molecular systems. The present 
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state-of-art of this approach, its advantages, limitations and applications has 
been reviewed recently by Bartlett [1]. 

The most sophisticated level of MB-RSPT, still applicable to moderately large 
molecules, is represented by the full fourth-order energy [2-13]. The applications 
of this method to chemical problems are still very scarce [4, 10-13], so that any 
further information on its reliability may be useful. In this paper we tried to 
examine the behaviour of the fourth-order MB-RSPT in calculation of potential 
energy curves of diatomic molecules using F2 as a model system. We were 
interested in the reliability of MB-RSPT in the vicinity of the equilibrium distance 
(this reliability may be estimated by calculations of spectroscopic constants), 
where the single determinant MB-RSPT is expected to work well, as well as in 
the question, how far from equilibrium is the method still applicable. The correct 
answer to this last question is important in using such an approach for calculations 
of potential hypersurfaces in chemical reactions and particularly in predictions 
of geometry and energy of transition states. Unfortunately in bond breaking 
processes we must expect difficulties for larger interatomic distances due to 
problems with quasi-degeneracy. 

In our work we proceeded in two steps. Our first aim was to analyse individual 
fourth-order contributions (single, double, triple and quadruple excitations) and 
their importance in calculating the spectroscopic constants and potential energy 
curve of F2 and to compare the results at various levels of approximation to the 
full fourth-order with the ones obtained using other related approaches, namely 
CEPA [14, 15] and CPMET [15]. In this step we have used the moderately large 
[4s3pld] Gaussian basis set. In the second step we have used a very extended 
[5s4p2dlf] basis set. In this step we were interested mainly in the question of 
how accurate the full fourth-order spectroscopic constants (calculated with a 
presumably saturated basis set) are in comparison with experiment. Moreover, 
our results offer the possibility to compare the spectroscopic constants obtained 
by the single determinant fourth-order MB-RSPT with those obtained by 
Blomberg and Siegbahn [16] who used exactly the same basis with the multi- 
configuration MC-SCF-CI method. 

2. Computational Method 

The computational aspects of the fourth-order MB-RSPT as well as its relation 
to other methods have been described elsewhere [1-3, 8, 17-27] and need not 
be repeated here in detail. It is just useful to mention that the total contribution 
from the connected fourth-order quadruple-excitation diagrams, E ~4) OR, will in 

~',(4) =E~).~._E(R4). They our paper be separated [19, 20] into two terms, i.e. ~OR 
represent the net effect of quadruple-excitations and the uncancelled part of the 
renormalization term, respectively. E ~  ) is represented by disjoint (D J) terms of 
connected quadruple-excitation diagrams, while E(R 4) is given as the conjoint 
(CJ) part* of the fourth-order renormalization t e rm [-E(D2)S]cj. In -E(D2)S, E ~  ) 

* An alternative terminology for terms "conjoint" and "disjoint" is "EPV", i.e. exclusion principle 
violating and "non-EPV", which is most often used, but is not quite correct [8, 27]. 
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denotes the energy of second-order double excitations and S is the re- 
normalization factor of the first-order wave function. In methods which are not 
size-extensive, e.g. configuration interaction restricted to double excitations 
(CI-D), the complete -E~)S contributions remains uncancelled. 

11~ (4) E~)  E(~) Although the above mentioned separation of ~QR into and is not 
invariant to unitary transformation from canonical to localized orbitals, it is 
suitable in discussion of the relation of MB-RSPT to other approaches. 

Other MB-RSPT contributions to the correlation energy are E~ ), E~  ~, etc., i.e. 
third-order, fourth-order, etc., contributions from double-excitations and E~s 4~, 
E~  }, i.e. fourth-order contributions from single and triple-excitations. Total 

E7(2)-(4) correlation energy up to the fourth order is then LSDTOR = 
E ~  +E~)+E~)+E~s4~ +E~)~-• As an approximation of CI-D up to the 

~,(2)-(4) _E(D2)-(4)+[_E~)S], which is not fourth order we use the expression ~C~-D -- 
size-extensive, in contrast to E~  ~-~4) + E ~  ), which is a correct (size-extensive) 
representation of double-excitations. Notation for other contributions in 
complete fourth-order energies is obvious. 

Spectroscopic constants were obtained by the same procedure as before [28] 
using the modified Dunham method [29, 30]. The total energy (SCF + correlation 
energy) was fitted by a polynomial of degree six. Energy points, which correspond 
to distances outside the maximum of the potential curves were excluded from 
the fit. 

As we have already mentioned, two different basis sets were used. The smaller 
one was a Gaussian (9s5pld) set [31] contracted [32] to [4s3pld], with exponents 
of six d-functions ad = 1.4 [14]. A very similar basis set has been used in CEPA 
and CPMET calculations [14, 15]. The extended basis set was a (10s6p2dlf) 
Gaussian set [31] contracted [33] to [5s4p2dlf], with polarization functions taken 
from Ref. [14]. It is identical to that used by Blomberg and Siegbahn [16] in 
their MC-SCF-CI calculations. 

Calculations with a [4s3pld] set were performed in Bratislava on a SIEMENS 
4004 computer using the POLYATOM/2 program [34] for the SCF part and 
the POLYCOR program [21, 35] (developed in our laboratory) for transforma- 
tion of integrals and MB-RSPT calculations. Results with a [5s4p2dlf] basis set 
were obtained in Garching on a AMDAHL 470 V/6 computer using the 
MUNICH system of programs [36] for SCF and transformation parts and 
POLYCOR for MB-RSPT calculations. 

3. Results 

The energy calculations which will be used in the forthcoming discussion are 
collected in Tables 1 and 2. Some additional energy components with [4s3pld] 
basis may be found in our previous work [37]. Spectroscopic constants are shown 
in Tables 3 and 4. The potential energy curves obtained with various approaches 
are presented in Fig. 1 for basis [4s3pld] and in Fig. 2 for the extended basis. 
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Table 1, SCF energy (in (E/Eh) and valence-shell correlation contributions (in 103 E/Eh) of F2 at 
various internuclear distances (in R/ao). [4s3pld] basis 

~(2)-(4) _E(D2)-(4) _E(4) _E(T 4) _E~) E(R 4) _E(D2)S R - E s c  F --aJSDTQ R 

2.20 198.6986257 421.56 413.30 3.10 9.12 6.90 10.86 30.24 
2.30 198.7226882 428.36 419.32 3.57 9.95 7.51 12.01 32.51 
2.40 198.7353564 435.44 425.63 4.10 10.85 8.15 13.29 35.02 
2.50 198.7396521 442.79 432.20 4.69 11.81 8.80 14.72 37.79 
2.60 198.7378456 450.36 439.04 5.34 12.82 9.47 16.31 40.82 
2.68 198.7331868 456.58 444.70 5.90 13.67 10.00 17.69 43.44 
2.80 198.7224660 466.20 453.57 6.80 15.02 10.79 19.99 47.71 
2.90 198.7112460 474.46 461.31 7.61 16.21 11.45 22.11 51.61 
3.00 198.6987668 482.95 469.39 8.46 17.46 12.09 24.44 55.84 
3.50 198.6317122 529.95 516.87 13.28 24.85 15.18 40.23 83.23 
4.00 198.5717651 586.27 580.93 19.02 34.90 18.39 66.96 126.45 
4.50 198.5244603 650.82 666.61 25.76 48.52 21.91 111.98 194.88 
5.00 198.4888399 717.35 776.52 33.30 66.39 25.79 184.63 299.59 

0.15 

/•(2]-(4) 
__ / ~Ct-D 

/ CP- ME'[ ~ - ~  

0.10 - -  

2)-(~) 
�9 DR / / . . . .  . . . . . . . . . . .  

II ~ . I I=:121-14) "-,- - -  / . /  ~ D Q R  

- /'/I I I"'~:CEPA (2}...------- 
/" . / /  / Exper. 

o os -  

/ /ZX  ., / =soQR 

....... \ 
- E(2)_14 ) "..'C a I 

o ~ I I t 
2 3 4 5 

RIo o 

Fig. 1. Potential energy curves of F 2. [4s3pld] basis. CP-MET and CEPA results are from Ref. [15]. 

4. Discussion 

4.1. Spectroscopic Constants with [4s3p l d] Basis Set 

From results presented in Table 3 it is evident that correlation effects improve 
SCF spectroscopic constants considerably, irrespective of the approximation 
used. Even the very simple second order result is quite satisfactory. However, 
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Table 3. Equilibrium distance (Re), harmonic vibration frequency (~), anharmonicity (to~x~) 
and vibration-rotation interaction constant (a,) for F 2 in different approximations. [4s3pld] 
basis 

Energy Re, 10 -10 m toe, cm -1 OOeXe~ cm-1 ~e~ cm-1 

SCF 1.331 1266 7.4 0.008 
E(D 2) 1.408 983 9.9 0.011 
E(D 2)-(3) 1.395 1011 10.5 0.011 
E(D 2)-(4) 1.417 909 14.5 0.014 
E(2)-(4) CI-D 1.371 1115 8.6 0.010 
E(2)-(4) DR 1.390 1032 10.2 0.011 
E(2)-(4) 1.399 999 10.7 0.011 DQR 
CEPA(2) a 1.411 959 13.0 - -  
CP-MET a 1.394 1041 9.5 - -  
E(2)-(4) SDOR 1.410 952 11.8 0.012 
E(2)-(4) 1.429 877 14.1 0.014 SDTQR 
Exper. b 1.412 917 11.2 0.014 

a Ref. [15]. 
b Ref. [38]. 

going f rom the simplest second order up to the complete fourth-order,  we cannot 
observe any straightforward gradual improvement ,  although clear trends may 
be easily seen within some subgroups of approaches. This is valid in the sequence 
E ~  )-(4) (with no renormalization term and no quadruple-excitations), ,~DORE'(2)-~4) 
(with E ~  ) partly compensated by E~)) ,  &:,DRY'(2)-(4) (with E ~  ) but no E ~  ~) and 

~,(2)-(4) (which contains no E ~  ) and at the same time the renormalization finally, ,~O-D 
term is overest imated by disjoint [--E(D2)S]Dj terms). We see that spectroscopic 
constants obtained f rom C E P A  (2) (and other variants of CEPA,  see Ref. [15]) 

L-,(2)-(4) and C P - M E T  [15] also lie within the E(D 2)-(4~ and "~CI-D values. This limiting 
E(2)-(4)  property of E ~  )-(4) and O-D was observed previously for correlation energies 

of series of molecules in equilibrium geometry and it was more thoroughly 
discussed elsewhere [19, 20]. 

Further,  it is worthwhile mentioning the very good agreement  between CP-MET 
~,(2)-(4) (which is a fourth order approximation to CP-MET) spectroscopic and L~DQ R 

~(2)-(4)  constants. The agreement  between C P - M E T  and "~DQR was also described 
previously for correlation energies of series of molecules [17, 22], provided that 
MB-RSPT converged satisfactorily. Evidently, the bad convergence of MB-RSPT 
for larger distances (vide infra) does not deteriorate the basic interrelations of 
these two methods in calculations of spectroscopic constants. 

Up to now we have been discussing methods which may be analysed in terms 
of double-excitation T2 and quadruple-excitation TaT2 clusters, speaking in the 
language of C P - M E T  [39, 40]. If the T1 and T3 clusters, i.e. single and triple- 
excitations, are taken into account in the fourth-order  MB-RSPT,  we can recover 

E,(2)- (4) ~,(2)-(4) E(2)-(4)  another  series .t.~DQ R , .I_~SDQR and SDTQR with clear trends of all spectroscopic 
~,(2)-(4) constants. Single-excitations improve ~-~DQR spectroscopic constants consider- 

ably (their importance was mentioned also by Koch and Kutzelnigg [15]), but 
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triples produce a too large correction. Consequently, the agreement with experi- 
ment is not so good as with singles alone. We may observe a larger influence 
from triple-excitations than from single-excitations, again in accord with results 
obtained for correlation energies of molecules in equilibrium geometry [7]. 

4.2. Potential Energy Curves with f4s3pld] Basis Set 

In analogy to the discussion of spectroscopic constants, one can start the dis- 
cussion of potential energy curves by dividing various approximations into distinct 

~,(2)-(4) and E(D 2)-(4) is valid subgroups. We can see that the sharing property of *"O-D 
over the whole range of investigated distances. Also trends after inclusion of 
E ~  ) in the first step and E ~  ) in the second step are clearly indicated. We notice 
that in the improvement of the very bad behaviour of E ~  )-(4) (the maximum 
occurs at about 3.6 a0) the crucial role belongs to the E(R 4) contribution. In this 

~.(2)-(4) sense we may also interpret the behaviour of the *"C~-D curve as the result of 
an overestimation of the (positive) renormalization term, due to the presence 
of the [ -E~)S]Dj  contribution. 

~,(2)-(4) L-,(2)-(4) E(2)-(4) Another  group of results is formed by the sequence *-DR , ~DOR , SODR and 
E(2)-(4) SDTOR. From this series we see that quadruple, single and ~riple-excitations, 
all being negative, gradually deteriorate the qualitatively correct behaviour of 
the ~(2)-(4) ~DR curve at larger distances (in the sense that they lead to a distinct 

~.(z)-(4) underestimates the correlation maximum); without E ~  ), of course, *"DR 
energy, so that the curve goes too high over the experimental one. On the whole, 
the best seems to be CEPA(2), probably as the result of a very successful 
cancelation of the errors inherent to it: single determinant starting wave function, 
approximate investigation of bilinear terms in CP-MET, from which all CEPA 
variants may be inferred [15, 23, 24], neglection of triple (and single) excitations 
and finally the effect of the basis set. Other CEPA variants are not so successful 
in calculating the potential curve of F2 [15]. In the light of our results, it does 
not seem correct to state that the best agreement of CEPA(2) with experiment 
is the result of the simulation of triple-excitations (this claim arises from the fact 
that in CEPA(2) the shift of energy in simplified CP-MET equations [15, 23, 
24], which is the analogue to the fourth-order  renormalization term in MB-RSPT, 
is underestimated). Also use of localized orbitals instead of canonical ones 
improves the results of CEPA(2) [15] (let us recall that CEPA(2) is not invariant 
with respect to unitary transformation among degenerate orbitals). 

Up to now all our discussion of various fourth-order  approximations in calculation 
of potential energy curves might be conducted in a similar lines as for spectro- 
scopic constants and for correlation energies of molecules at equilibrium 
geometry. One important exception should be noted at this place, namely the 

. ~(2)-(4) very different potential energy curves obtained with CP-MET a . a  tZDOR �9 While 
at equilibrium distance both methods lead to very similar correlation energies, 
the problem of quasi-degeneracy between equilibrium ground state configuration 
and the 3o-g 2 + 30-2 configuration at large interatomic distances is the reason of 

�9 (2)-(4) their different behaviour in this region. Also the great difference between EDOR 
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and E~  )-(4) and the incorrect behaviour of E~  )-(4) curve reflect the problem 
with quasi-degeneracy [41]. The fact that E~  )-(4) does not converge at large 
distances is well known. Taking double excitations to very high orders, the 
convergency may be compared for three interatomic distances (equilibrium, 
intermediate and large) in Table 5. The breakdown of E~ ~-(k), as a result of its 
divergency at large distances, where quasi-degeneracy occur, is equivalent to 
the breakdown of the linear CP-MET (L-CP-MET), which becomes singular in 
this case. The careful analysis of the singularity of L-CP-MET and some model 
calculations were given by Paldus and co-workers [41-43]. Taking into account 
the non-linear terms in CP-MET [41-43] (or equivalently energy shifts in 
non-linear CP-MET equations [15]) improves the situation, although in cases 
of real degeneracy also single determinant CP-MET breaks down [42]. Methods 
to account for quasi-degeneracy within approximate CP-MET were suggested 
by Paldus et al. [42, 43]. 

In MB-RSPT the analogy to the "shift of energy" by the non-linear terms in 
CP-MET or CEPA methods is represented by renormalization term E~  ) (i.e. 
by the fourth-order "EPV" terms, in the usual terminology), which is the only 
positive fourth-order term. Although it is partly compensated by E~  ), it still 
remains relatively effective in improving bad behaviour of double excitations at 
large distances. It is also interesting to note that the negative energy of the "net" 
effect of quadruple excitations, E~  ~, rises with distance quite slowly. Con- 
sequently, at large distances E~)R, the total invariant contribution from fourth- 
order connected quadruple-excitation diagrams, remains highly positive. 

3o'g ~ 3tru Although through these diagrams we investigated to some extent the 2 2 
configuration, starting from single determinant RHF wave function we cannot 
expect a balanced description of correlation effects from all important configur- 
ations in situations where they become near-degenerate. 

~.~4) and E~  ) which are negative, rise with Other fourth-order contributions, ~ s  
distance considerably (see Table 1) and thus lead to a pronounced maximum in 
the potential energy curve. They may be compensated only by higher-order 
renormalization terms, which may be positive [44, 45]. The importance of these 
terms in improving the potential energy curves may not be estimated seriously 
at present. 

Starting from the single determinant RHF wave function, the only method which 
may be successful also in situations where the quasi-degeneracy occurs is probably 
the extended CP-MET, at least at the CCSD (Coupled Cluster Singles and 
Doubles) level [46]. In bond breaking processes it introduces higher order T1T2 
clusters which may be important at large interatomic distances [46]. 

4.3. Results with Extended Basis Set 

The situation where the improvement of the method (i.e. the inclusion of triple 
excitations in our case) deteriorates the agreement with experiment clearly 
demands the examination of the basis set. This is not so much important for the 
shape of the potential energy curve at larger distances, because here the situation 
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Fig. 2. Potential energy curves of F2. [Ss4p2dlf] basis 

is rather clear. Namely, we cannot expect any substantial improvement of 
principal problems with quasi-degeneracy using extended basis, if we retain the 
single determinant starting wave function. In connection with potential energy 

. 1  ~ ( 2 ) - ( 4 )  curves it is sufficient just to mention that me tZSDTOR curve (see Fig. 2) lies very 
close to the experimental one up to distances of about 3.7 ao, i.e. up to 1.4 times 
the equilibrium distance. This should be quite sufficient in calculations of transi- 
tion states. All trends in various approximations to the full fourth order discussed 
in the preceding section are valid also in the present case. 

Much more interesting are calculations of spectroscopic constants, where the 
question, whether the single determinant fourth-order  MB-P..SPT is capable to 
provide values compatible with experiment is a principal question to be answered 
in this section. A look at results presented in Table 4 gives us the answer, that 

L-,(2)-(4) the agreement os z-~SDTQ R values with experiment is really very good. The small 
error for the equilibrium distance, 0.008 • 10 -1~ m, we first tried to attribute 
partly to correlation effects from inner shells. Therefore  we performed calcula- 
tions for five distances around the equilibrium, including inner shell correlation 
energy. These results are presented in Table 6. Notice that, with these calculations 
we obtained about 86% of the "experimental"  correlation energy at equilibrium 
distance ( -0 .725 Eh, see Ref. [47]), which is probably the largest value obtained 
so far. The effect of inner shells on Re is quite small, however. We fitted five 
points from Table 6 and five points for the same distances with valence shell 
correlation only and obtained the decrease of Re by 0.001•  10-1~ after 



558 M. Urban et al. 

inclusion of inner shell correlation, we and other spectroscopic constants remained 
unaffected. 

Some contribution to the error in the calculated Re may be expected also from 
the neglection of the relativistic effects. We estimated further a decrease of Re 
by about 0.003 • 10 -1~ m, investigating relativistic effects by formula for the 
contraction of the covalent radius proposed by Pyykk6 and Desclaux [48]. The 
residual small error in Re may be attributed to the neglection of higher order 
contributions in MB-RSPTincluding neglection of correlation contributions from 
clusters not investigated in the fourth order (e.g. TIT2), to the effect which arises 
from using single determinant starting wave function and perhaps also to very 
small basis set effect. 

~ , ( 2 ) - ( 4 )  From the Table 4 we may observe also quite good agreement of our ~SDTOR 
spectroscopic constants with the MC-SCF-CI calculations of Blomberg and 
Siegbahn [16]. In order to diminish the possible differences which may arise 
from different evaluation of spectroscopic constants, we performed the calcula- 
tion of Re and ~Oe from Blomberg and Siegbahn's energies for distances up to 
4.0 a0. The result is Re = 1A17 • 10 -~~ m, which is identical with the original 
result, and ~oe =912 cm-*, which is higher by 2 cm -1. Bearing in mind the 
sensitivity of calculated ~o~ to details in the fitting procedure [16], this result is 
quite satisfactory. We conclude, that both methods lead to almost identical 

1~7(2)-(4) results in the vicinity of equilibrium. The advantage of our ~Sm-OR lies in its 
size extensivity, in contrast to MC-SCF-CI restricted to single and double 
excitations. Further, it is conceptually simpler and probably faster in comparison 
to MC-SCF-CI and at the same time it recovers more correlation energy. Of 

L"(2)-(4) breaks down, course, for larger distances, where our single determinant Lz SDa'OR 
the MC-SCF-CI method is strictly preferred. Alternatively, the MB-RSPT must 
start from the multiconfiguration reference function. This, however, is a very 
difficult problem (see review [1]). 

Table 4. Equilibrium distance (Re), harmonic vibration frequency (toe), anharmonicity (toex e) 
and vibration-rotation interaction constant (ae) for F2 in different approximations. [5s4p2dlf] 
basis 

Energy Re, 10 -1~ m We, cm -1 O)eXe, cm -1 OLe, cm -1 

SCF 1.329 1265 6.47 0.008 
E ~  ) 1,400 1007 8.63 0.010 
E ~  ~-(3~ 1.386 1039 9.16 0,010 
E~>(4) 1.407 946 12.1 0.012 
E(2) (4~ 1.379 1068 8.49 0.010 DR 
E(2~'(4~ 1.388 1037 8.91 0.010 DQR 
E (2>(*) 1.399 993 9.74 0.011 SDQR 
E(2)-(4) 1.420 913 11.7 0,013 SDTQR 
MC-SCF-CI a 1.417 910 10.1 
Exper. b 1.412 917 11.2 0.014 

a Ref. [16]. 
b Ref. [38]. 
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Table 5. Convergency of double-excitations (energies in E/Eh) [4s3pld] 
basis 

R/ro 
Order of 
MB-RSPT 2.68 4.00 5.00 

2 -0.43785 -0.53184 -0.62769 
3 0.00435 0.00087 -0.02399 
4 -0.01120 -0.04996 -0.12484 
5 -0.00208 -0.02459 -0.08914 
6 -0.00155 -0.02489 -0.10342 
7 -0.00077 -0.02032 -0.10310 
8 -0.00047 -0.01790 -0.10818 
9 -0.00028 -0.01548 -0.11185 

10 -0.00017 -0.01350 -0.11628 
11 -0.00011 -0.01176 -0.12073 
12 -0.00007 -0.01026 -0.12544 
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Finally, we would like to add two additional comments  to the results, presented 
in Tables 3, 4 and 6. First, it is interesting to note that the main effect from the 
enlargement  of the basis set on the spectroscopic constants is accounted for 
already with double excitations. The effect of triples (the most  difficult case from 
the computat ional  point of view) but also of singles and quadruples (expressed 

~,(4) as ~ORJ is considerably constant in both the smaller and extended bases. This 
suggests the possibility of estimation of the difficult terms using the results with 
the smaller basis set. Alternatively, the scaling procedure introduced by Wilson 
[49] may be applied. This possibility deserves further examination. Second, there 
is also the possibility of investigating the effect of inner shell correlation at a 
simpler level. We can see f rom Table 6, that the inner shell correlation contribu- 
tion is almost entirely included already in the second order. For example,  for 

E(2)-(4) R = 2.68 ao the total SDTQR energy leads to the effect of inner shells of 
0.066 02 Eh, whilst E(D 2) to 0.064 80 Eh. 

5. Conclusions 

The single determinant  fourth-order  MB-RSPT is a convenient method for 
calculations of the potential  energy curve of F2 around the equilibrium geometry.  
For larger distances it is reliable up to about 1.4 Re. If this is valid for a wider 
class of systems, such reliability should be quite sufficient for calculations of the 
geometry  and energy of transition states. 

Full fourth order calculations with an extended basis set provide spectroscopic 
constants in very good agreement  with experiment.  Re and ~oe for F2 have a 
relative error of about  0.5% in comparison to experimental  values. Although 
the accuracy of about  0.008 x 10 -a~ m for Re and the accuracy of 4 cm -a for We 
is not excellent in comparison with the most  precise experimental  measurements ,  
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the  M B - R S P T  m a y  be  very  useful  in p r ed i c t i on  of spec t roscop ic  cons tan ts  for  
systems,  no t  a m e n a b l e  to expe r imen t .  

O u r  inves t iga t ions  conf i rmed  the  resul ts  of M C - S C F - C I  ca lcula t ions  [16], tha t  
even  f - func t ions  are  necessa ry  for  ob ta in ing  an equ i l ib r ium b o n d  d is tance  in 
sa t i s fac tory  a g r e e m e n t  with expe r imen t .  

In  app l i ca t ions  of M B - R S P T  to chemica l  reac t iv i ty  one  can ha rd ly  use the  very  
e x t e n d e d  basis  set  rou t ine ly .  If we t ake  as a typical  smal le r  set a [ 4 s 3 p l d ]  set, 
which  is still r e l a t ive ly  economic  and at  the  same  t ime  it r ecovers  all i m p o r t a n t  
co r re la t ion  effects we r e c o m m e n d  the  use of an i n c o m p l e t e  f o u r t h - o r d e r  M B -  

E C2)-(4) This  a p p r o a c h  is r e la t ive ly  t r ac t ab le  also for  l a rger  RSPT,  p r e f e r a b l y  SDOR. 
sys tems and,  due  to successful  cance l l a t ion  of def ic iences  in basis  set and  o m i t t e d  
con t r i bu t ion  f rom tr iples,  still qu i te  accura te .  This,  of course ,  m a y  not  be  val id  
for  all sys tems (the d e p e n d e n c e  of the  t r ip le  exc i ta t ion  c o m p o n e n t s  on  the  basis  
set and  the i r  r e l a t ion  to o the r  f o u r t h - o r d e r  con t r ibu t ions  has been  discussed in 
the  Ref.  [50]). 
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a DAAD scholarship during whose term this work was completed. 

References 

1. Bartlett, R.J.: Ann, Rev. Phys. Chem. 32, 359 (1981) 
2. Wilson, S., Silver, D. M.: Comput. Phys. Commun. 17, 47 (1979) 
3. Wilson, S., Saunders, V. R.: Comput. Phys. Commun. 19, 293 (1980); J. Phys. B: Atom. Molec. 

Phys. 12, L403 (1979); corr. 12, 2403 (1979) 
4. Wilson, S., Guest, M. F.: Molec. Phys. 43, 1331 (1981) 
5. Wilson, S., Guest, M. F.: J. Phys. B: Atom. Molec. Phys. 14, 1709 (1981) 
6. Krishnan, R., Frisch, M. J., Pople, J. A.: J. Chem. Phys. 72, 4244 (1980) 
7. Frisch, M. J., Krishnan, R., Pople, J. A." Chem. Phys. Letters 75, 66 (1980) 
8. Krishnan, R., Pople, J. A.: Int. J. Quant. Chem. 14, 91 (1978) 
9. Kvasni~ka, V., Laurinc, V., Biskupi~, S.: Molec. Phys. 39, 143 (1980); Czech. J, Phys. B. 

31, 41 (1981) 
10. Krishnan, R., Frisch, M. J., Pople, J. A., Von R. Schleyer, P.: Chem. Phys. Letters 79, 408 (1981.) 
11. Frisch, M. J., Krishuan, R., Pople, J, A.: J. Phys. Chem. 85, 1467 (1981) 
12. Whiteside, R. A., Krishnan, R., Frisch, M. J., Pople, J. A., Von R. Schleyer, P.: Chem. Phys. 

Letters 80, 547 (1981) 
13. Kvasni6ka, V.: Chem. Phys. Letters 78, 98 (1981) 
14. Ahlrichs, R., Lischka, H., Zurawski, B., Kutzelnigg, W.: J, Chem. Phys. 63, 4685 (1975) 
15. Koch, S., Kutzelnigg, W.: Theoret. Chim. Acta (Berl.) 59, 387 (1981) 
16. Blomberg, M. R. A., Siegbahn, P. E. M.: Chem. Phys. Letters 81, 4 (1981) 
17. Bartlett, R. J., Purvis, G. D.: Int. J. Quantum Chem. 14, 561 (1978) 
18. Bartlett, R. J., Purvis, G. D.: Phys. Scripta 21, 255 (1980) 
19. Urban, M., Huba~, I., Kell6, V., Noga, J.: J. Chem. Phys. 72, 3378 (.1980) 
20. Kell6, V., Urban, M.: Int. J. Quantum Chem. 18, 1431 (1980) 
21. Noga, J.: Comput. Phys. Commun., in press 
22. Pople, J. A., Krishnan, R., Schlegel, H. P., Binkley, J. S.: Int. J. Quantum Chem. 14, 545 (1978) 
23, Ahlrichs, R.: Comput. Phys. Commun. 17, 31 (1979) 
24. Kutzelnigg, W., in: Modern theoretical chemistry, Schaefer III, H. F., ed. New York: Plenum 

1976 



562 M. Urban et al. 

25. Cfirsky, P., Urban, M.: Ab initio calculations. Methods and applications in chemistry: Lecture 
Notes in Chemistry, Vol. 16. Berlin: Springer Verlag 1980 

26. Huba~, I., (~gtrsky, P.: Topics Curr. Chem. 75, 97 (1978) 
27. Purvis, G. D., Bartlett, R. J.: J. Chem. Phys. 68, 2114 (1978) 
28. Urban, M., Kell6, V.: Molec. Phys. 38, 1621 (1979) 
29. Simons, G., Parr, R. G., Finlan, J. M.: J. Chem. Phys. 59, 3229 (1973) 
30. Herzberg, G.: Spectra of Diatomic Molecules. New York: Van Nostrand 1950 
31. Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965) 
32. Dunning, T. H.: J. Chem, Phys. 53, 2823 (1970) 
33. Dunning, T. H.: J. Chem. Phys. 55, 716 (1971) 
34. Neumann, D. B., Basch, H., Kornegey, R. L., Snyder, L. C., Moskowitz, J. W., Hornback, C., 

Liebmann, S. P.: POLYATOM/2, QCPE 199 (1971) 
35. Urban, M., Kell6, V., Noga, J., Cernugfik, I.: POLYCOR (unpublished) 
36. Diercksen, G. H. F., Kraemer, W. P.: MUNICH, Molecular Program System, Reference Manual, 

Special Technical Report (Max-Planck-Institut fiir Physik und Astrophysik, Miinchen), in prepar- 
ation 

37. Kell6, V.: Chem. Zvesti 36, 289 (1982) 
38. Huber, K. P., Herzberg, G.: Constants of diatomic molecules. New York: Van Nostrand 1979 
39. (~f~ek, J.: J. Chem. Phys. 45, 4.256 (1966); Adv. Chem. Phys. 14, 35 (1969) 
40. Paldus, J., (;fZek, J., Shavitt, I.: Phys. Rev. A5, 50 (1972) 
41. Adams, B. G., Jankowski, K., Paldus, J.: Chem. Phys. Letters 67, 144 (1979); Phys. Rev. A24, 

2330 (1981) 
42. Jankowski, K., Paldus, J.: Int. J. Quantum Chem. 18, 1243 (1980) 
43. Paldus, J., Jankowski, K., Adams, B. G., (~[~ek, J., In: Electron correlation: Proceedings of 

the Daresbury Study Weekend 1979, Guest, H. F., Wilson, S., ed. Daresbury, Warrington 
WA4 4AD, England: Sciences Research Council 1980 

44. Siegbahn, P.: Chem. Phys. Letters 55, 386 (1978) 
45. Paldus, J., Creek, J.: Advan. Quantum Chem. 9, 105 (1975) 
46. Purvis III, G. D., Bartlett, R. J.: J. Chem. Phys. 76, 1910 (1982) 
47. Cremer, D.: J. Comput. Chem. 3, 165 (1982) 
48. Pyykk6, P., Desclaux, J. P.: Account Chem. Res. 12, 276 (1979) 
49. Wilson, S.: J. Phys. B: At. Mol. Phys. 14, L31 (1981) 
50. Guest, M. F., Wilson, S.: Chem. Phys. Letters 72, 49 (1980); Wilson, S., Guest, M. F.: Chem. 

Phys. Letters 73, 607 (1980) 

Received September 1, 1982 


